Pharmacogenomics from the Ground Up

Session 1: Concepts and Tools in Pharmacogenomics

- The human genome contains 3164.7 million chemical nucleotide bases (A, C, T, and G).
- The average gene consists of 3000 bases, but sizes vary greatly, with the largest known human gene being dystrophin at 2.4 million bases.
- The total number of genes is estimated at 30,000.
- Almost all (99.9%) nucleotide bases are exactly the same in all people.
- The functions are unknown for over 50% of discovered genes.

- Less than 2% of the genome codes for proteins.
- Repeated sequences that do not code for proteins ("junk DNA") make up at least 50% of the human genome.
- Repetitive sequences are thought to have no direct functions. Over time, these repeats reshape the genome by rearranging it, creating entirely new genes, and modifying and reshuffling existing genes.
- During the past 50 million years, a dramatic decrease seems to have occurred in the rate of accumulation of repeats in the human genometry.

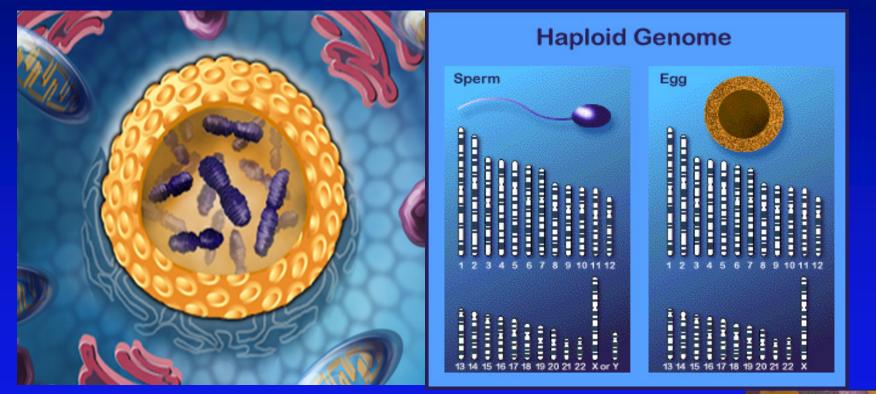
- The human genome's gene-dense "urban centers" are predominantly composed of the DNA building blocks G and C.
- In contrast, the gene-poor "deserts" are rich in the DNA building blocks A and T. GC- and AT-rich regions usually are the light and dark bands we see on chromosomes.

- Genes appear to be concentrated in random areas along the genome, with vast expanses of noncoding DNA between.
- Stretches of up to 30,000 C and G bases repeating over and over often occur adjacent to gene-rich areas, forming a barrier between the genes and the "junk DNA." These CpG islands are believed to help regulate gene activity.
- Chromosome 1 has the most genes (2968), and the Y chromosome has the fewest (231).

Session Goals

- Concepts in Pharmacogenomics
- Metabolic Enzymes
- Pharmacogenomics of CYPs
- Clinical Examples
- Pharmacogenomics Jeopardy!

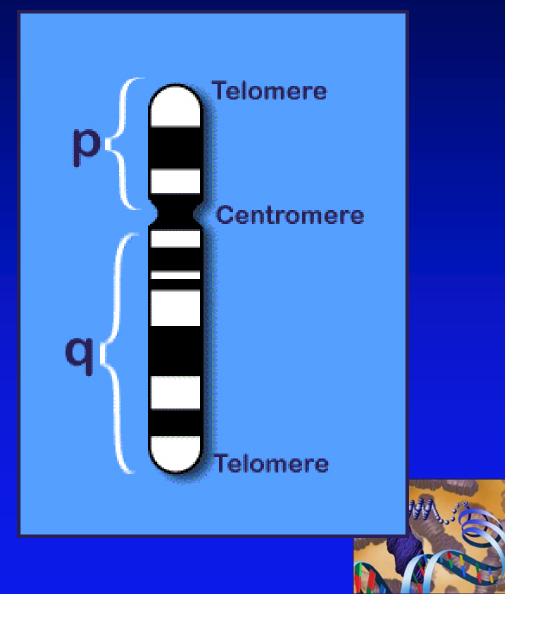
Concepts in Pharmacogenomics

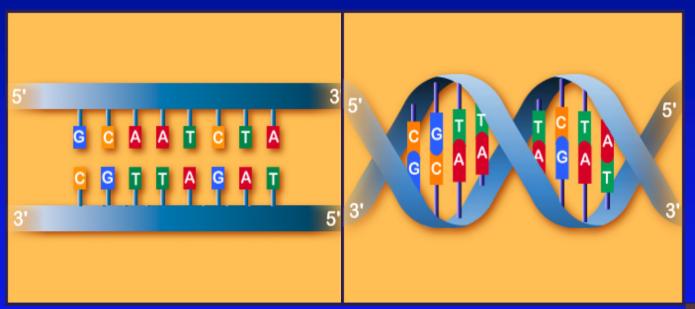


Pharmacogenetics and Pharmacogenomics

- *Pharmacogenetics:* the effect of genetic variation on drug response, including disposition, safety and tolerability, and efficacy.
- *Pharmacogenomics:* the application of genome science (genomics) to the study of human variability in drug response.
- We will study in the second session of this course *pharmacogenomics* applied to Epidermal Growth Factor Receptor (EGFR) drugs such as Tarceva, Iressa, and Erbitux.

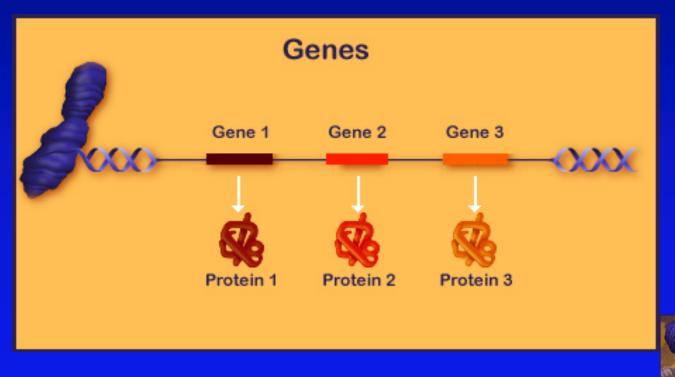
Genomic Organization: Chromosomes

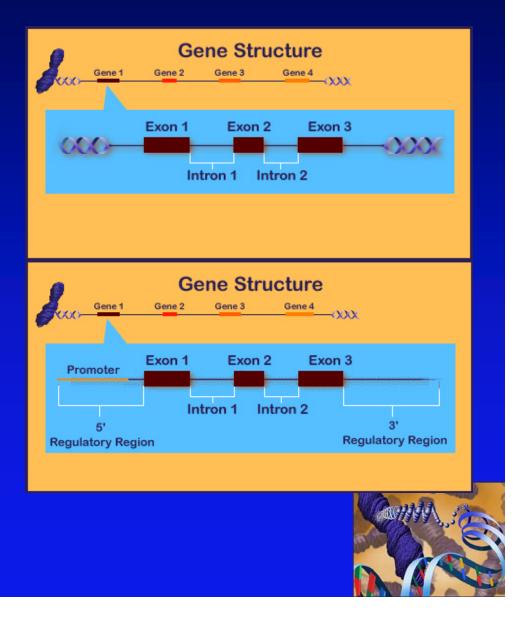

• Every human cell with the exception of the gametes contains 23 pairs of chromosomes.


Genomic Organization: Chromosome Structure

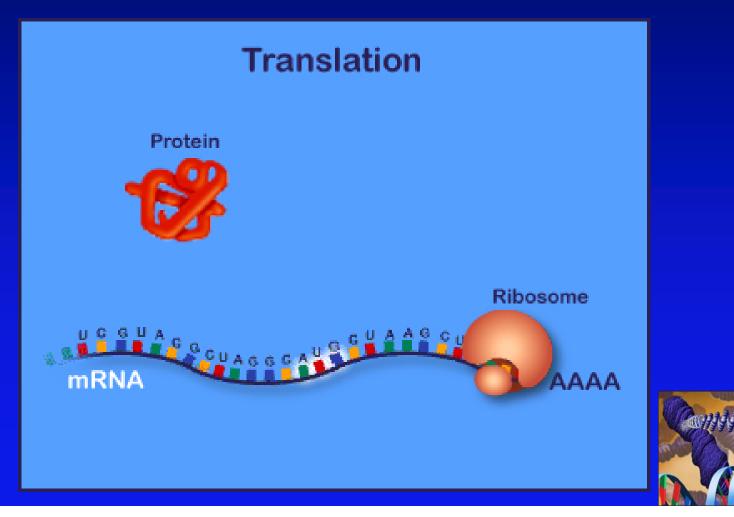
- Chromosomes carry all of the genetic material coding for all the proteins in every cell.
- Chromosomes consist of DNA tightly wound around special protein structures called histones.

Structure of DNA

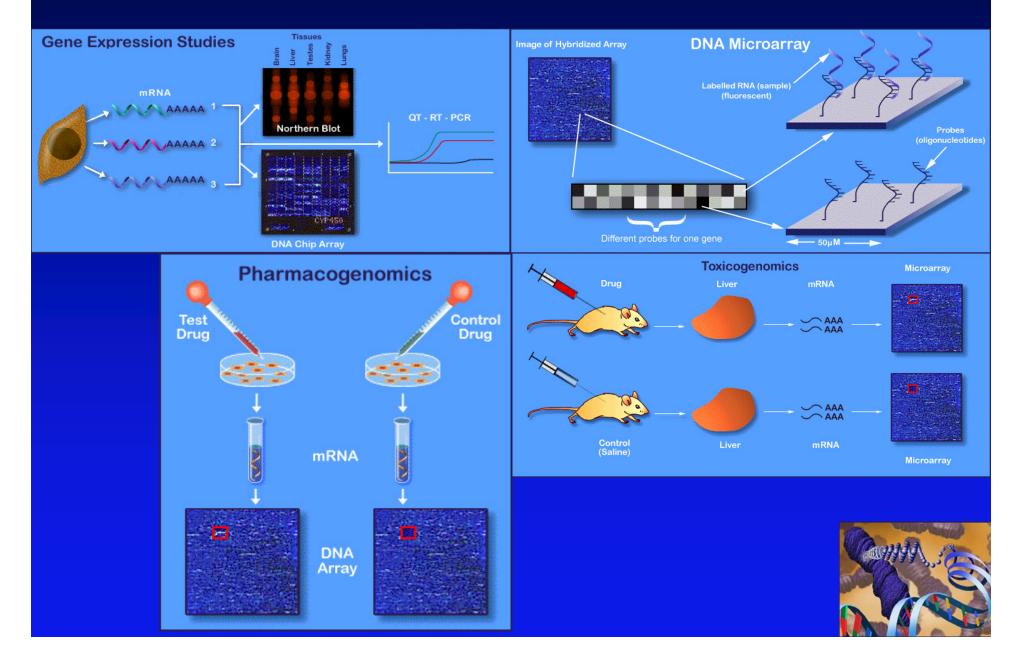

• DNA is comprised of a string of 4 *nucleotide bases*, called A, G, T and C, that are linked together in a structure called the double helix. Bases on opposite strands are always matched A-T and C-G.


Structure of Genes

 A segment of DNA containing all of the information needed to encode for one protein is called a *gene*. The order and sequence of the base pairs in a gene determine which protein is made.


Transcription of Genes

- The transcription of DNA into messenger RNA is often assembled from discontinuous sequences in the genome called *exons*, which are separated by sequences called *introns*.
- This process is referred to as *splicing*. A genomic sequence can yield more than one splicing product.
- Transcription can be controlled through regulatory sequences known as the *promoter* sequences.



Putting It All Together: *Translation into Protein*

• Translation into protein sequences is accomplished at the ribosome.

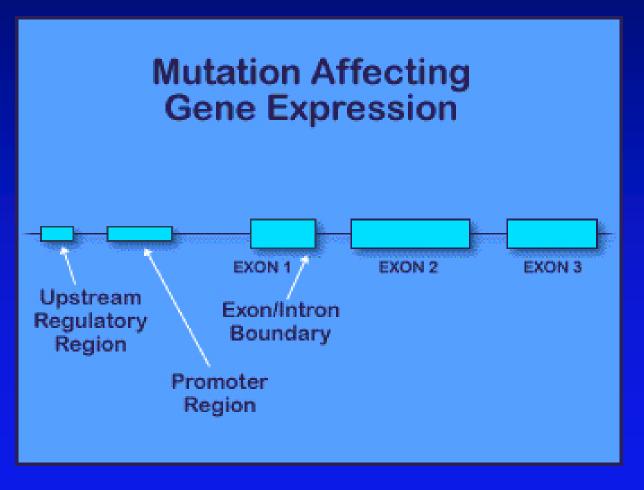
Gene Expression in Drug Development

The Genetic Code: *Translation into Protein Building Blocks*

• The Genetic Code has some redundancy. But things can – and do – go wrong...

Second Base								
	U	с	Α	G				
	UUU Phe	UCU	UAU Tyr	UGU U Cys				
u	UUC	UCC Ser	UAC	UGC C				
	UUA Leu	UCA	UAA Stop	UGA Stop A				
	UUG	UCG	UAG Stop	UGG Trp G				
	CUU	CCU	CAU His	CGU U				
	CUC Leu	CCC Pro	CAC	CGC C				
°,	CUA	CCA	CAA Gin	CGA A				
as	CUG	CCG	CAG	CGG G				
First Base	AUU	ACU	AAU Asn	AGU Ser U				
	AUC lie	ACC Thr	AAC	AGC C				
A	AUA	ACA	AAA Lys	AGA Arg				
	AUG Met / Start	ACG	AAG /	AGG G				
	GUU	GCU	CAU Asp	GGU U				
G	GUC Val	GCC Ala	GAC	GGC C				
G	GUA	GCA AIA	GAA Glu	GGA A				
	GUG	GCG	GAG	GGG G				

Mutations in the Genome


 One in every 1200 bases may be different in any two humans. This variation, which is called a *polymorphism*, is largely responsible for differences between how humans respond to drugs. Several types of mutations are associated with these variations:

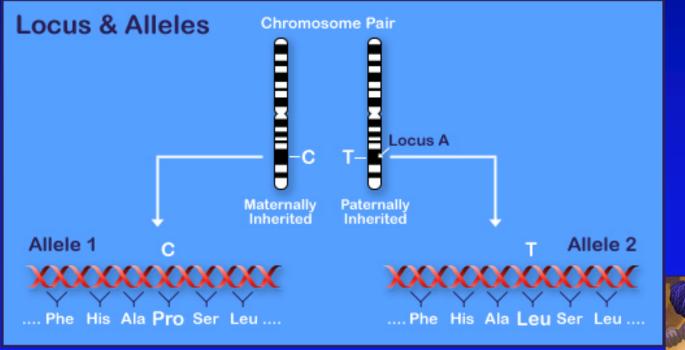
Missense Mutations					Silent Mutations			
ATG	GAA	GCA	ССТ		ATG	GAA	GCA	СGТ
Met	Glu	Ala	Gly		Met	Glu	Ala	Gly
ATG	GAC	GCA	СGT		ATG	GAG	GCA	СGТ
Met	Asp	Ala	Gly		Met	Glu	Ala	Gly
Nonsense Mutations								
No	onsense	Mutation	าร	Ĺ	Fra	ameshift	Mutatio	n
No ATG	onsense GAA	Mutation GCA	ns CGT		Fra ATG	ameshift GAA		n CGT
						GAA		
ATG	GAA	GCA	ССТ		ATG	GAA	GCA	Сбт
ATG	GAA	GCA	ССТ		ATG	GAA	GCA	Сбт

Mutations in the Genome

• Mutations can also affect gene expression when they occur in regulatory or promoter sequences or in the exon/intron boundary.

Clinically Important Polymorphisms

- Alter amino acid sequence of the corresponding protein (functional).
- Occur preferably within the exon or in the promoter region of the gene.
- Reasonable prevalence in the target population.



Alleles

• An allele is one of alternative forms at a genetic locus on a single chromosome. For loci in most of the genome, a human has two chromosomes, which may carry the same or two different alleles.

Genotype

• The specific genetic variants at one or more loci of an individual. Typically, the two chromosomal copies of a polymorphic site. For instance, A/A or A/G or G/G.

How to Calculate Allele and Genotype Frequencies: The Hardy-Weinberg Equation

$(p^2 + 2pq + q^2) = 1$, where (p + q) = 1

- Example: cystic fibrosis
 - 1/2000 = 0.0005 live births to caucasian parents have cystic fibrosis
 - » q² = 0.0005 (0.05% of the population are *homozygotes* for the recessive q allele)
 - » q = 0.02 (the *allele frequency* is 2%)
 - p = 1 q = 0.98 (the *allele frequency* is 98%)
 - » $p^2 = 0.96$ (96% of the population are *homozygotes* for the dominant p allele)
 - 2pq = 0.0392 (3.92% of the population are *heterozygotes*, or asymptomatic carriers of the cystic fibrosis gene)

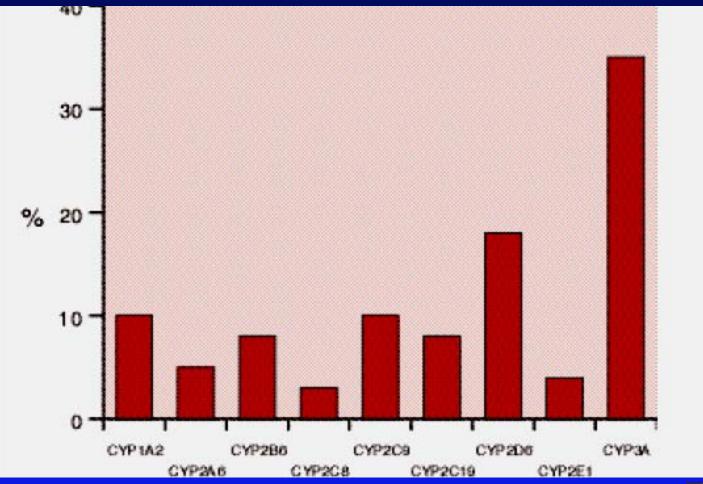
Metabolic Enzymes

Drug Metabolizing Enzymes

- Drug Metabolism
 - Small number of metabolic pathways
 - Microsomal enzymes
 - Liver and small intestine
- Drugs
 - Lipophilic
 - Low water solubility
 - Metabolizing enzymes increase water solubility
 - Water-soluble metabolites are easier to excrete

Phases of Drug Metabolism

Enzyme reaction	Metabolic reaction	Examples of enzymes
Phase I reactions		
Oxidation	Introduces hydroxyl, epoxide and ketone groups Shortens alkyl side chains	Alcohol and aldehyde dehydrogenases Amine oxidases
	Converts alcohols to aldehydes and acids	Cytochromes P450
Reduction	Introduces hydrogen into ketones and nitro groups	Nitro- and azo-reductases
Hydrolysis	Breaks down esters to alcohols and acids	Esterases
Phase II reactions		
Acetylation	Adds acetate to polar sites	Acetyltransferases
Amino acid conjugation	Adds amino acids to polar sites	Glutathione transferases
Glucuronidation	Adds sugars to polar sites	Glucuronyl transferases
Methylation	Adds methyl groups to polar sites	Methyltransferases
Sulphation	Adds inorganic sulphate to polar sites	Sulphotransferases



P450 Enzymes

- 57 Different Active Genes
- 17 different families
- CYP1, CYP2 and CYP3 are primarily involved in drug metabolism.
- CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 are responsible for metabolizing most clinically important drugs
- Reactions
 - Aliphatic oxidation
 - Aromatic hydroxylation
 - Sulphoxide formation
 - N-oxidation and N-hydroxylation
 - N-/O-/S-dealkylation
 - Oxidative or reductive dehalogenation

P450s: Who Work Most Often

Major P450 Families and Their Isoforms

CYP family/subfamily	Isoform*	Organ localisation Polymorphic substrates		
1 A	1A1	Primarily extrahepatic	Yest	
	1A2	Primarily hepatic	Yest	
	1B1	Primarily extrahepatic	Yes [†]	
2A	2A6	Hepatic and extrahepatic	Coumarin, nicotine	
	2A7	Hepatic and extrahepatic		
	2A13	Primarily extrahepatic		
2B	2B6	Primarily hepatic	Yest	
2C	2C8	Primarily hepatic		
	2C9	Primarily hepatic	Tolbutamide, warfarin	
	2C18	Primarily hepatic		
	2C19	Primarily hepatic	Diazepam, propranolol	
2D	2D6	Primarily hepatic	Codeine, nortriptyline, ecstasy	
2E	2E1	Primarily hepatic	Yes†	
2F	2F1	Primarily extrahepatic		
2G	2G1	Olfactory mucosa		
2J	2J2	Primarily extrahepatic		
3A	3A4	Primarily hepatic	Yest	
	3A5	Primarily hepatic	Yest	
	3A7	Foetal liver		
	3A43	Primarily hepatic		
4 A	4A11	Primarily hepatic		
4B	4B1	Primarily extrahepatic		

* The role in drug metabolism of additional CYP isoforms in these families (eg, CYP4F2, CYP4F8) is not well described

† Multiple variants exist for these polymorphic isoforms but the consequences on the substrates they metabolise are not yet fully documented — see http://www.imm.ki.se/CYPalleles/default.htm

Nuclear Receptors in Enzyme Induction of Drug Metabolizing Enzymes

Receptor Aryl hydrocarbon (Ah/XRE*)	CYPs induced CYPIAI, CYPIA2, CYPIBI	Inducers Cigarette smoking, barbecued food and omeprazole	Other enzymes induced Glutathione transferases (GST) Glucuronlytransferases (UGT)
Constitutive androstane	CYP2B6, CYP2A6,	Phenobarbital, amobarbital, secobarbital	Epoxide hydrase, GST, UGT
(CAR)	СҮРЗА†	butobarbitone, heptobarbitone, glutethimide, promethazine	Cytochrome P450 reductase
Pregnane X	CYP3A4, CYP3A5,	Rifampicin, carbamazepine,	Cytochrome P450
(PXR)	CYP3A43 [†] , CYPs2A [†] , CYPs2C [†] , CYP2E1 [†]	dexamethasone, phenylbutazone, phenytoin, sulfadimidine, sulfinpyrazone; phenobarbital†, St John's Wort	UGT†
Peroxisome proliferator- activated (PPAR)	CYP4A	Fibrate anti-hyperlipidaemics	Cytochrome P450 reductase
TR	CYP reductase	Thyroid hormone (T3)	
Unknown	2E1	Ethanol and chloral hydrate, isoniazid	

 \star XRE = xenobiotic responsive element (nuclear binding site) for the Ah receptor

†These items are suspected but not yet proven

Deug Rharmacouticals	Associated CYP Drug	Associate	d CYP Drug	Associate	1 CYP
Alteri	286.384	Flexande	142,206	Nortriptyline	206
Abrastan	2019,584	Reconstole	2 C9, 2C 19, 5A4	Olamajaina	182
Aniolazae	1A2,2C9,3A4	Respettee	2 C9, 3C 19, 2D6, 1A4	Ozaprzole	1A2, 2C 19, 3A4
Amitriphyline	209,206,344	Rephenetre	2D6	Ordination	1A2,2D6
Anpelantr	38.4	Ratipolia	209	Orphanadrina	205
Anternatorale	344	Ratamide	142.344	Oxformein	142
Alonautitin	202.384	Reventitio	209	Pacitizati	208.144
Amindine	38.4	Bayessmire	142.2019.206.384	Entotratole	2019
Branscriptine	38.4	Gestodese	104	Encoincel	182,251,384
Budenonide	344	Gilberchmide	144	Parcoattine	1A2.2D6
Buperpion	2166	Graduita	144	Perstamidine	2019
Captopril	2D6	Griscofabria	2.66	Purberatine	206
Casta manepine	1A2.2B5.2C8.2C9.	Haloteridol	142.205.344	Perty berauting	206
	384	Heroberbital	142,209,2019	Phenobarbitai	1A2,2A6,2B6,2CB,
Carisoprodol	2019		209		203.184
	2010	Ibaproën Kashanika		The set between a	2029
Caricolol Chionambhauicei	200 286,384	Téleficrités Tenio matine	2A6,286,384 1A2,2019,206,384	Phenylbeimone Discussion	20.9 1A2.2C9.2C19.3A4
	142		342,2019,206,344	Phenytoin Diamating	182, 203, 2019, 384 286
Chicedime poside Chicemanian	1.82 2D6.384	Indicavir Indonumin	206	Piocarpine Pressican	200
Thiosoquine Thiosoquine			2D6 JA4		
Chierphenamine	2D6	Inizotocan		Predminologie	384
Octorportu	384	Instance	281	Predminora	384
Cimetidine	209,2019,384	Inoningid	2 (19, 206, 251, 251,	Primidone	384
Constitute	2D6		1A4	Procininida	296
Operication	1A2_2D6_3A4	Instatinoin	2 CB, 3 A4	Prognitizen	384
Cimpride	384	Turadipine	1A4	Prognati	2019,384
Chiepun	2019,206,384	Drac oranole	JAA	Promethatine	286
Claritheonycin	1.42,344	Iwrmectin	144	Propulsaces	206_3A4
Comprante	2019,205	Ketocompole	JAA	Propranol ol	1A2, 2D6
Clopidogral	206,384	Lancopratole	2 C19, 384	Quattapine	384
Clotrimanole	384,384	Leves organized	144	Quinidhe	206_3A4
Clompine	1A2_2D6_3A4	Lignocaine	286_3A4	Rabapanole	2019,384
Cocatia	1.44.344	Limite	144	Ratingi	203
Codetee	2106, 384	Lopizavic	144	R.fabrita	286,263,269,2639,
Colchricine	384	Lonisite	144		384
Cortinol	384	Lourian	2 C9, 384	P.fampicia	286,286,203,209,
Cyclophosphamide	2A6_2B6_3A4	Lovatatia	184		2019.384
Dagasine	344	Materialize	2D6	P.interridone	206
Debrisogaine	2D6	Mefenancic actid	2.02	B.ionwir	182,206,384
Designamine	2D6	Melozican.	144	Reprinted	295
Desarretinscele	286.384	Methadone	2D6_3A4	Sacatarytr	384
Destromethorphan	2106, 384	Methozalen	142,246,251	Secobarbini	246.209
Destropropozyphere		Methylpredutelorse	384	Sertindole	384
Danjan	1A2,286,2C19,206,	Metoproiol	206	Seriesline	206.144
	384	Metronidanole	344	Sevolurane	295.291
Didolarac	309	Mexiletine	142.205	Sinvesiatio	384
Nationin.	344	Misseria	2D6	Sirotinuu	384
Agencen Nacion	384	Micoratole	203.344	Suffrigerators	384.384
Agazin Oktober	384	Midarohan	205,384	Surrepyrators Sulfscharing	203.184
Distriction	281	Militariatoria	104	Sufstmitte	384
Doceinei			2019		
	203,384 384,384	Mociobemide Mociobemide		Sulfarm theory of	2039_18-4
Tiwigen:		Morphine	2D6	Tacestinus (FIC506)	384 A REALIZED AND A REAL
Indepri	344	Napasan .	142,209	Tanaxifan	1A2, 256, 206, 3A4
infunna	281	Ne finodo se	JAA	Rezian	209
Significant ne	384	Neifficzeir	2 C19, 3A4	Terformétrie	206_144
irythromycia	1.42,344	Nevirapine	285_344	Testosterone	295, 344
Stradici	1.42,344	Nicastipine	344	Theophyline	182,251,384
Saturda a	216	Nicotine	146,296	Thioridatine	206
Shi ylatradiol	384	Pétésélpine	JAA	Ticlopidine	2019,206
Doposide	344	Minisciptus	144	Timolol	206
Felodizine	384	Pitrol dipine	144	Tolkazanáde	203_30.9

Drug Pharmaceuticals	Associated CYP Drug	Ac	mociated CYP	Drug	Associated	CAB
Toremifene	3A4	Valproic acid	2A6,2B6,2C9,3	1A4 '	Wirfirin (R)	1A2,2A6,2C19,3A4
Tranylcypromine	2A6, 2C 19	Venlafaxine	2D6		Wirfirin (S)	2C9
Tietinoin	2C8,3A4	Verapamil	1A2, 3A4		Zafirlukast	2C9
Trimethoprim	2C9	Vinblastine	3A4		Zuclopenthixol	2D6
Trimipramine	2D6	Vincristine	3A4			
Tropisetron	2D6	Vinorelbine	3A4			
Unlicensed produc	ts and environmental a	gents				
Aceclofenac 2C9	2C9	Flurythromycin	3A4	1	Phenacetin	1 A 2
Ajmalicine	2D6	Funfylline	1A2	1	Phenformin	2D6
Alpidem	3A4	Germander	3A4	1	Ponsinomycin	3A4
Alprenol	2D6	Glutethimide	2B6	1	Propylajmaline	2D6
Amiflamine	2D6	Grapefruit juice	3A4		Quercetin	3A4
Aprindine	2D6	(naringenin)		1	Rauhimbine	2D6
Anachidonic acid	2B6	Guancian	2D6	1	Remoxipride	2D6
Benzphetamine	2C8, 3A4	Hydrocodone	2D6]	Rokitantycin	3A4
Bufuralol	2D6	Isosafrole	1A2	1	Seratro dast	2B6, 2C9
Caffeine	1A2,2E1	Josannycin	3A4	1	Sparteine	2D6
Cannabis (THC)	2C9, 3 A 4	Ketones 2E1	2E1	1	St John's Wort	3A4
Chlorproguanil	2C19	Lauric acid	2B6	1	Sulphamethizole	2C9
Chlorzozazone	2E1	Lobeline	2D6	:	Sulphaphenazole	2C9
Coumarin 2A6	2A6	Lornoxicam	209	5	Suprofen	2C9
Cyclobenzaprine	3A4	Mephenytoin	2B6, 2C19		Therine	1A2
Delavirdine	2D6, 3A 4	Metamphetamine	2D6		Teniposide	2C19, 3A4
Deprenyl	2D6	Methoxychlor	2B6		Terguride	3A4
Dichloralphenazone	2 A 6	Methoxyflurane	2B6, 2E1		Tienilic acid	2C9,2D6
Dithiocarb	2A6,2E1	Methoxyphenami	ne 2D6		Tomoxetine	2D6
Ebastine	3A4	Midecamycin	3A4		Triazolam	3A4
Ecstasy (MDMA)	2B6, 2D6	Minaprine	2D6		Trifluperidol	2D6
Encainide	2D6	Niludipine	3A4		Trimethadione	1A2,2E1,3A4
Ethanol	2C9,2E1	Nitrendipine	3A4		Troglitazone	3A4
Felbarnate	2C19	Northcoretine	2D6		Troleandomycin	3A4
Aunarizine	2D6	Oxidipine	3A4		Zonisamide	3A4

Readers are advised to check the extent of possible interactions shown here using additional sources eg, the British National Formulary (BNF) Drugs are shown with their associated CYPs. Those CYPs in black are known to metabolise the drug, while those in blue are also inhibited and those in red also induced by the drug. Occasionally, the drug is not a substrate of the CYP it induces/inhibits eg, quinidine is not a substrate of CYP2D6.

Non-pharmaceutical agents may not be licensed in the UK but are shown because of their practical or theoretical importance.

Abbreviations: MDMA, methylenedioxymetamphetamine; THC, tetrahydro cannabinol.

Compiled from multiple sources including 7, 8, 11, 12, 14, 16, 17 and http://www.xenotechllc.com and http://medicine.iupui.edu/flockhart/

Pharmacogenomics of CYPs

Polymorphic P450s

- Genetically Polymorphic P450s Associated with Changes in Drug Effects
 - -**CYP2C9**
 - -CYP2C19
 - -CYP2D6

 The correlation between pheno- and genotype for CYP3A is not fully understood.

CYP Genotypes

- Abnormal CYP alleles

 Abolished enzyme activity
 Deleted gene or defect in allele
 Reduced or altered activity
 Allele is not fully functional but some functionality remains

 CYP2C9*2 and *3
 CYP2D6*10 and *17
 Increased activity
- CYP2D6: genotype predicts phenotype

CYP2D6 Potential Phenotypes

- Poor Metabolizers
 - lack functional enzyme.
- Intermediate Metabolizers
 - heterozygous for one functional and one deficient allele
 - have two partially defective alleles that cause reduced metabolism
- Extensive Metabolizers
 - two normal alleles
 - often majority of population
 - "normal metabolizers
- Ultra-Rapid Metabolizers
 - duplicated or multiduplicated functional CYP2D6 genes with extremely high metabolic capacity.

Phenotypic Effects of P450 Pharmacogenomics

Drug	Slow metabolizer phenotype	Fast metabolizer phenotype
Prodrug, needs metabolization to work (eg. codeine is metabolized by CYP 2D6 to morphine)	Poor efficacy Possible accumulation of prodrug	Good efficacy, rapid effect
Active drug, inactivated by metabolization (example is omeprazole)	Good efficacy Accumulation of active drug can produce adverse reactions May need lower dose	Poor efficacy Need greater dose or slow release formulation

Phenotyping and Genotyping

• Phenotyping

- Dose subjects with a compound or compounds that are metabolized to a product exclusively by the enzyme systems in question.
- Collect plasma or urine samples
 - » Single time point
 - » Over a period of time
- Analyze for model compound and metabolite
- Ratio of concentrations of compound and its metabolite is used to measure metabolic capacity for a specific P450.

Genotyping

- Collect blood (> 1 ml)
- Isolate DNA from nucleated blood cells.
- Amplify number of copies of DNA by the Polymerase Chain Reaction (PCR).
- Genotype by sequencing or probing.

Pharmacogenomics in Drug Development

- DNA samples taken for ADME genotyping in drug development
 - Routine if one enzyme is known as the predominant route of metabolism.
- Compounds with narrow safety margin
 - Reduce risk of developing concentration-dependent side effects when treated with standard doses
 - Exclude poor metabolizers (if the parent drug is predominantly biologically active)
 - Exclude ultra-rapid metabolizers (if metabolite is predominantly biologically active)
- Compounds with wide therapeutic window
 - Dose adjustments based on pharmacogenomic tests.
 - Increase opportunity for regulatory approval on subpopulation.
 - Less important if compound and metabolite have similar activity.
- Troubleshooting
 - Retrospective analysis in subjects with side effects or lack of therapeutic effect.
 - Prediction of ethnic variation explaining profiles in different populations.

Clinical Examples

Labeling Regulations

"If evidence is available to support the safety and effectiveness of the drug only in selected subgroups of the larger population with a disease, the labeling shall describe the evidence and identify specific tests needed for selection and monitoring of patients who need the drug."

- 21 CFR 201.57

How Does It Read?: Examples of Pharmacogenomic Information in the Drug Label

Brand Name (generic name)	Labeling section	Labeling Statement
HERCEPTIN® (trastuzumab) August 2002	INDICATIONS AND USAGE	HERCEPTIN should be used in patients whose tumors have been evaluated with an assay validated to predict HER2 protein overexpression (see <u>PRECAUTIONS</u> : <u>HER2 Testing</u> and <u>CLINICAL STUDIES</u> : <u>HER2 Detection</u>).
Purinethol (6-Mercapto- purine) July 2004	WARNINGS DOSAGE and ADMINISTRATI ONS	 Individuals who are homozygours for an inherited defect in the TPMT (thiopurint-S-methyltransferase) gene may be unusually sensitive to the myelosuppressive effects of mercaptopurine and prone to developing rapid bone marrow suppression following the initiation of treatment (see DOSAGE AND ADMINITRATION). Patients with inherited little or no thiopurine S-methyltransferase (TPMT) activity are at increased risk for severe PURINETHOL toxicity from conventional doses of mercaptopurine and generally require substantial dose reduction. The optimal starting dose for homozygous deficient patients has not been established (see <u>CLINICAL</u> <u>PHARMACOLOGY, WARNINGS</u> and <u>PRECAUTIONS</u> sections)
(thioridazine) July 2003	CONTRA- INDICATIONS	thioridazine is contraindicated in patients, comprising about 7% of the normal population, who are known to have a genetic defect leading to reduced levels of activity of P450 2D6 (see <u>WARNINGS</u> and <u>PRECAUTIONS</u>).
STRATTERA (atomoxetine) March 2003	Drug-Drug Interactions Laboratory Tests	In EMs, inhibitors of CYP2D6 increase atomoxetine steady-state plasma concentrations to exposures similar to those observed in PMs. Dosage adjustment of STRATTERA in EMs may be necessary when coadministered with CYP2D6 inhibitors, e.g., paroxetine, fluoxetine, and quinidine (<i>see Drug Interactions under PRECAUTIONS</i>). In vitro studies suggest that coadministration of cytochrome P450 inhibitors to PMs will not increase the plasma concentrations of atomoxetine. <u>CYP2D6 metabolism</u> Poor metabolizers (PMs) of CYP2D6 have a 10-fold higher AUC and a 5-fold higher peak concentration to a given dose of STRATTERA compared with extensive metabolizers (EMs). Approximately 7% of a Caucasian population are PMs. Laboratory tests are available to identify CYP2D6 PMs. The blood levels in PMs are similar to those attained by taking strong inhibitors of CYP2D6. The higher blood levels in PMs lead to a higher rate of some adverse effects of STRATTERA (<i>see DVTRSE</i>).

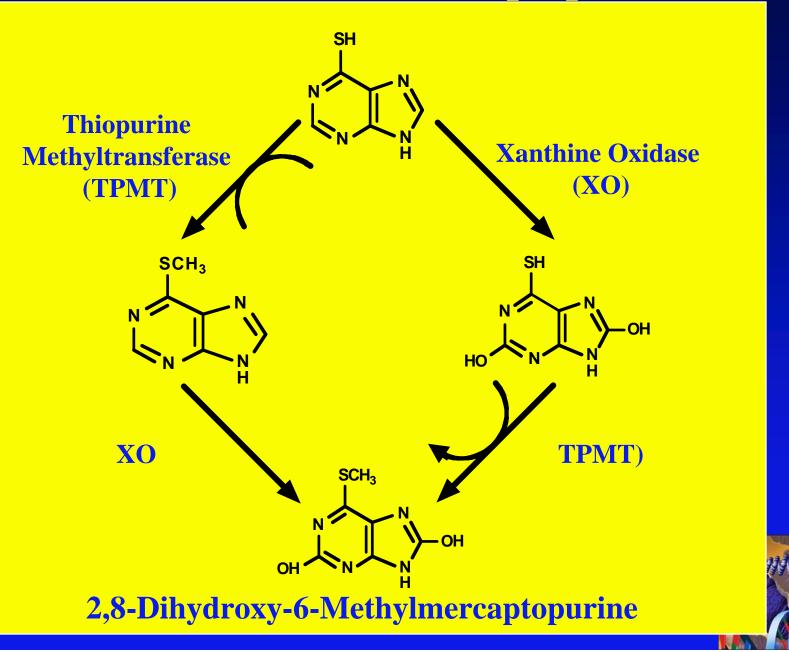
Mercaptopurines

• Leukemia indication

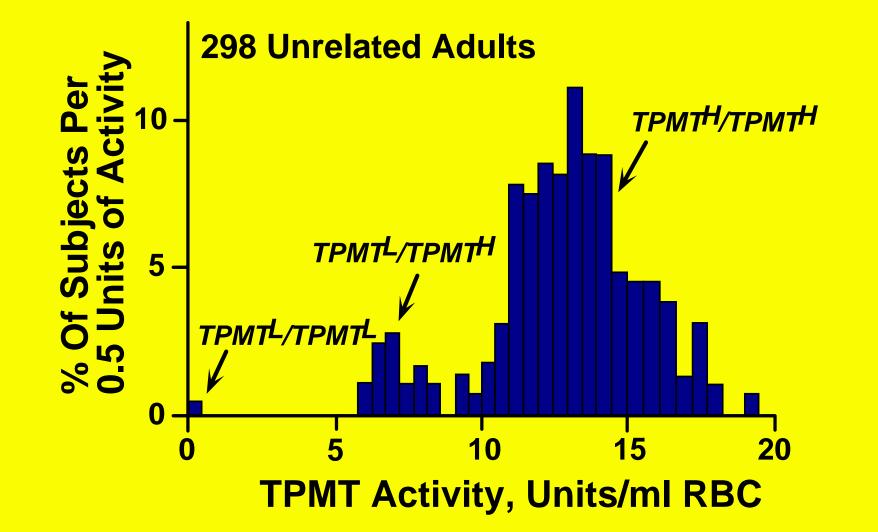
- Converted to nucleotides for incorporation into DNA by hypoxyxanthine phosphoribosyl transferase (HPRT).
- Mercaptopurine-derived products block DNA replication and lead to tumor cell death.

Mercaptopurine metabolism

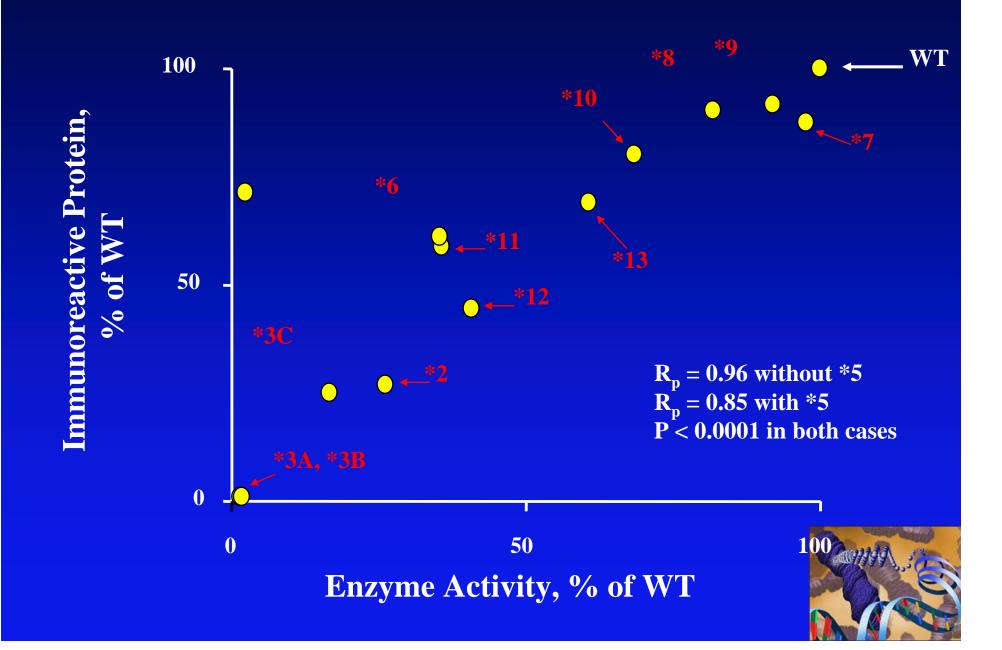
- Thiopurine methyltransferase (TPMT) converts mercaptopurine into an inactive metabolite called methylmercaptopurine.
 - » 90% homozygous for wild type allele and metabolize product normally
 - Toxicity is low, but relapse is high.
 - » Some are poor metabolizers
 - Toxicity is high.
 - » 0.3% are homozygous for these variants
 - » High risk of myelosuppression and secondary tumors.
- Label: "Recommendation to use pharmacogenetic testing to guide dosing".



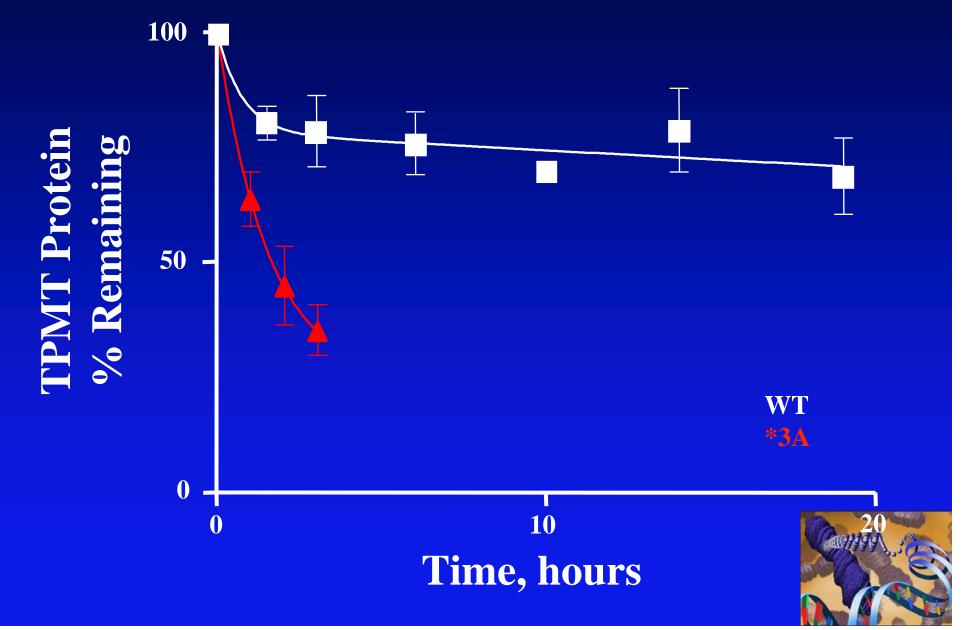
2005 FDA Pharmacogenomic Guidance Valid Biomarkers

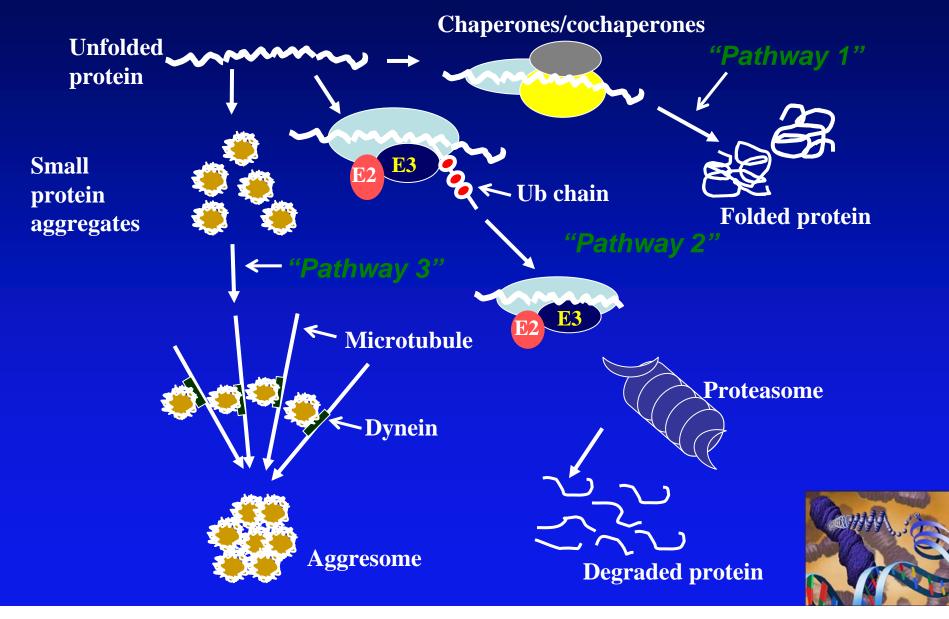

Cytochrome P450 2D6 (CYP2D6)
Thiopurine S-methyltransferase (TPMT)

Metabolism of 6-Mercaptopurine



Human RBC TPMT




Human Recombinant TPMT Allozymes

Human TPMT Protein Degradation

Protein Folding, Degradation and Aggregation

TPMT Genetic Polymorphism Clinical Consequences

- Low TPMT

 Increased thiopurine toxicity
 Increased risk for secondary neoplasm
- High TPMT -Decreased therapeutic effect

6-Mercaptopurine and TPMT Polymorphism

- Labeling absence of PGx information in label discussed at CPSC and Pediatric Oncology Subcommittee in 4/03 and 7/03
- *New labeling* revised by sponsors in consultation with FDA- includes data on increased risk of severe myelosuppression for TPMT activity-deficient genotypes
- Informs clinicians about option of using TPMT testing to guide treatment with 6MP

General Process for Updating Labels with PGx Information

- Develop the appropriate questions
- Capture the relevant evidence
- Abstract and summarize the evidence
- Evaluate the quality of studies
- Assess the overall strength of evidence
- Consider other factors in relabeling decision
- Determine specific language for label

Warfarin

- Optimal use hampered by 10-fold interpatient variability in doses required for therapeutic response.
- CYP2C9 allelic variants are associated with impaired elimination of warfarin and exaggerated anticoagulatory responses to the drug.
 - CYP2C9*1 is the wild type
 - Other variants include CYP2C9*2, CYP2C9*3, CYP2C9*4 and CYP2C9*5
 - » Allelic frequencies depend on ethnicity
- 185 patients genotyped for CYP2C9 and treated with warfarin
 - Variant groups required more time to achieve stable dosing with a median difference of 95 days.
 - Gene-dose effect relationship suggested when comparing the *1/*1, *1/*2, and *1/*3 genotypes, with corresponding mean maintenance doses of 5.63, 4.88, and 3.32 mg.
 - Conclusion: CYP2C9*2 and CYP2C9*3 polymorphisms are associated with increased risk of over coagulation and bleeding events.
 - In general, subjects who are heterozygous for these two alleles require a 60 to 75% lower dose of warfarin compared to homozygous wild-type patients.

What would you do?

